Sains Malaysiana 52(10)(2023): 2985-2997
http://doi.org/10.17576/jsm-2023-5210-19
Impact
of Haze Event on Daily Admission of Respiratory System Patients in Peninsular
Malaysia
(Impak Jerebu terhadap Kemasukan Harian Pesakit Sistem Pernafasan Di Semenanjung Malaysia)
NURUL ANIS AYUNI KHAIRUL ANUAR, HUMAIDA BANU SAMSUDIN
& NORIZA MAJID*
Mathematical Science Department, Faculty of Science
and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Diserahkan: 23 Mei 2023/Diterima: 10 Oktober 2023
Abstract
Diseases of the respiratory system, especially in children
and the elderly, are significantly related to air pollution. Exposure to air
pollution has led to an increase in the number of patients who need hospital
treatment. The purpose of this study was to learn about the effects of changes
in the levels of major pollutant components on the number of daily hospital
admissions of respiratory system patients. The generalised linear lag model is
used in this study to demonstrate the lag structure of the exposure-response
impacts. The results show that particulate matter (PM10), nitrogen
dioxide (NO2), carbon monoxide (CO), and ozone (O3)
component factors, as well as meteorological factors like wind speed and
ultraviolet (UV) radiation, affect the number of hospital admissions of
respiratory system patients. The best model is a lag 6 negative binomial
regression model. Daily hospital admission is positively correlated with PM10,
NO2, and wind speed, and negatively correlated with CO, O3,
and UV radiation. According to the findings of the study, fine particulate
matter (PM2.5) and sulphur dioxide (SO2), as well as
temperature, humidity, and wind direction, are not significantly contributing
factors in the number of respiratory system patients admitted to hospitals.
Keywords: Air pollution; generalised linear lag model; hospital admissions; negative binomial regression;
respiratory system diseases
Abstrak
Penyakit sistem pernafasan, terutamanya pada kanak-kanak dan
orang tua mempunyai kaitan yang ketara dengan pencemaran udara. Pendedahan
kepada pencemaran udara telah menyebabkan peningkatan bilangan pesakit yang
memerlukan rawatan di hospital. Tujuan kajian ini adalah untuk mengetahui
tentang kesan perubahan tahap komponen pencemar utama terhadap kekerapan
kemasukan ke hospital harian pesakit sistem pernafasan. Model lag linear
teritlak digunakan dalam kajian ini untuk menunjukkan struktur lag bagi kesan
pendedahan-tindak balas. Keputusan menunjukkan bahawa partikel terampai (PM10),
nitrogen dioksida (NO2), karbon monoksida (CO), dan faktor komponen
ozon (O3), serta faktor meteorologi seperti kelajuan angin dan
sinaran UV, mempengaruhi bilangan kemasukan pesakit sistem pernafasan ke
hospital. Model terbaik ialah model regresi binomial negatif lag 6. Kemasukan
hospital harian berkorelasi positif dengan PM10, NO2, dan
kelajuan angin, dan berkorelasi negatif dengan sinaran CO, O3, dan
ultraviolet (UV). Menurut penemuan kajian, partikel terampai halus (PM2.5)
dan sulfur dioksida (SO2), serta suhu, kelembapan, dan arah angin,
bukan merupakan faktor penyumbang yang signifikan terhadap kemasukan pesakit
sistem pernafasan ke hospital.
Kata kunci: Kemasukan hospital;
model lag linear teritlak; pencemaran udara; penyakit sistem pernafasan; regresi binomial negatif
RUJUKAN
Atkinson, R., Bremner, S.,
Anderson, H., Strachan, D. & Bland, J. 1999. Short-term associations
between emergency hospital admissions for respiratory and cardiovascular
disease and outdoor air pollution in London. Archives of Environmental
Health 54(6): 398-411. https://doi.org/10.1080/00039899909603371
Bodaghkhani, E., Mahdavian, M., MacLellan, C., Farrell,
A. & Asghari, S. 2019. Effects of meteorological factors on
hospitalisations in adult patients with asthma: A systematic review. Canadian
Respiratory Journal 9:
1-11. https://doi.org/10.1155/2019/3435103
Bousquet, J. &
Khaltaev, N. 2007. Global
Surveillance, Prevention and Control of Chronic Respiratory Diseases: A
Comprehensive Approach.World Health Organization. https://apps.who.int/iris/handle/10665/43776
Cameron, A. & Trivedi, P. 2013. Regression
Analysis of Count Data. 2nd ed. Cambridge: Cambridge University Press.
Cameron, A. & Trivedi, P. 1998. Regression
Analysis of Count Data. United Kingdom: Cambridge University Press.
Capraz, Ö. & Deniz, A. 2021. Assessment of hospitalisations from asthma, chronic obstructive pulmonary disease and acute bronchitis in relation
to air pollution in İstanbul, Turkey. Sustainable Cities and Society 72: 103040. https://doi.org/10.1016/j.scs.2021.103040
Chen, L., Mengersen, K. & Tong, S. 2006.
Spatiotemporal relationship between particle air pollution and respiratory
emergency hospital admissions in Brisbane, Australia. Science of the Total
Environment 373(1): 57-67. https://doi.org/10.1016/j.scitotenv.2006.10.050
de Souza, A., Guo, Y., Pavão,
H.G. & Fernandes, W.A. 2014. Effects of air
pollution on disease respiratory: Structures lag. Health 6: 1333-1339. DOI:10.4236/health.2014.612163
Department of Statistics Malaysia. 2021. Penerbitan
Perangkaan Sebab Kematian di Malaysia.
Department of Statistics Malaysia. 2020. Hari Radang
Paru-Paru (Pneumonia).
Department of Environment Malaysia. 2006. Malaysia Environmental Quality Report 2006.
European Respiratory Society. 2021. Forum of
International Respiratory Societies (FIRS). The Global Impact of Respiratory
Disease. 3rd ed. https://www.firsnet.org/images/publications/FIRS_Master_09202021.pdf
Farhat, S., Paulo, R., Shimoda, T., Conceição, G., Lin,
C., Braga, A. & Warth, M. 2005. Effect of air pollution on pediatric
respiratory emergency room visits and hospital admissions. Braz. J. Med.
Biol. Res. 38(2): 227-235. https://doi.org/10.1590/S0100-879X2005000200011
Gabriella, A., Abdullah, S. & Soemartojo, S. 2019.
Comparison of poisson and quasi-poisson regression: A simulation study. Proceeding
of IEEE
International Conference on Software Architecture. pp. 1-8. https://doi.org/10.29244/icsa.2019.pp1-8
Gasparrini, A. 2011. Distributed lag linear and non-linear models in R: The
package DLNM. Journal of Statistical Software 43(8): 1-20. https://doi.org/10.18637/jss.v043.i08
Gasparrini, A., Armstrong, B. & Kenward, M. 2010.
Distributed lag non-linear model. Statistics in Medicine 29(21):
2224-2234. https://doi.org/10.1002/sim.3940
Hanafi, N., Agarwal, D., Chippagiri, S., Brakema, E., Pinnock, H., Sheikh, A. & Liew, S.M. 2021. Chronic respiratory disease surveys in
adults in low- and middle-income countries: A systematic scoping review of
methodological approaches and outcomes. Journal of Global Health 11:
04026. https://doi.org/10.7189%2Fjogh.11.04026
Hansen-Flaschen, J. 2022. Respiratory
Disease. https://www.britannica.com/science/respiratory-disease (accessed on 26 November 2022).
Huber, R., Fischer, R., Wanka, E. & Heuman, C.
2012. Influence of air pressure, humidity, solar radiation, temperature, and
wind speed on ambulatory visits due to chronic obstructive pulmonary disease in
Bavaria, Germany. International Journal of Biometeorology 56(1):
137-143. https://doi.org/10.1007/s00484-011-0405-x
Ito, K., Thurston, G.D. & Silverman, R.A. 2007.
Characterization of PM2.5, gaseous pollutants, and meteorological
interactions in the context of time-series health effects models. J. Expo.
Sci. Environ. Epidemiol. 17(Suppl 2): S45-S60. https://doi.org/10.1038/sj.jes.7500627
Jevtic, M., Dragic, N., Bijelovic, S. & Popovic, M.
2014. Cardiovascular diseases and air pollution in Novi Sad, Serbia. International
Journal of Occupational Medicine and Environmental Health 27(2): 153-164. https://doi.org/10.2478/s13382-014-0239-y
Jin, L., Zhou, T., Fang, S., Zhou, X. & Ba, Y. 2022. Association of air
pollutants and hospital admissions for respiratory diseases in Lanzhou, China,
2014-2019. Environment Geochemistry Health 45(3): 941-959. https://doi.org/10.1007/s10653-022-01256-2
Kulkarni, D., Wang, X., Sharland, E.,
Stansfield, D., Campbell, H. & Nair, H. 2022. The global burden of
hospitalisation due to pneumonia caused by Staphylococcus aureus in the under-5 years children. Clinical Medicine 44:101267.
https://doi.org/10.1016/j.eclinm.2021.101267
Latif, M. T., Othman, M., Idris, N., Juneng,
L., Abdullah, A. M., Hamzah, W. P., Khan, M.F., Sulaiman, N.M.N., Jewaratnam, J., Aghamohammadi, N. and Sahani,
M., Chung, J.X., Ahamad, F. Amil,
N., Darus, M., Varkkey, H., Tangang, T. & Jaafar,
A. B. 2018. Impact of regional haze towards air quality in Malaysia: A
review. Atmospheric Environment 177: 28-44.
https://doi.org/10.1016/j.atmosenv.2018.01.002.
Marciniuk, D., Ferkol, T., Nana, A., Oca, M., Rabe, K. & Billo, N. 2014. Respiratory diseases in the world.
Realities of today – opportunities for tomorrow. Forum of International
Respiratory Societies (FIRS). African Journal of Respiratory Medicine 9(1):4-13.
https://www.africanjournalofrespiratorymedicine.com/articles/AJRM%20Mar%2014%20pp%204-13.pdf
McCullagh, P. & Nelder, J. 1989. Generalized
Linear Models. 2 ed. New York: Chapman & Hall.
Ministry of Health Malaysia. 2021. Laporan Tahunan
Kementerian Kesihatan Malaysia 2021.https://www.moh.gov.my/moh/resources/Penerbitan/Penerbitan %20Utama/ANNUA L%20 REPORT/Laporan_Tahunan_KKM
Ministry of Health Malaysia. 2020. Laporan Tahunan
Kementerian Kesihatan Malaysia 2020. https://www .moh.gov.my/moh /resources/Penerbitan/Penerbitan %20Utama/ANNUAL %20REPORT /Laporan_ Tahunan_KKM_2020.pdf
Ming, C.R., Ban, Y‐L.A., Abdul Hamid, M.F., Latif, M.T., Mohammad,
N. & Hassan, T. 2018. Annual Southeast Asia haze increases respiratory
admissions: A 2‐year large single institution experience. Respirology 23(10): 914-920.
https://doi.org/10.1111/resp.13325
Mohd Diah, I. & Aziz, N. 2021. Mapping of
pneumonia disease in Malaysia using Poisson-Gamma model. AnnalsofR.S.C.B.25(1):2062-2067.
http://www.annalsofrscb.ro/index.php/journal/article/view/324
Murray, C.J. & Lopez, A.D. 1996. The Global Burden of Disease: A
Comprehensive Assessment of Mortality and Disability from Diseases, Injuries
and Risk Factors in 1990 and Projected to 2020. World Health Organization.
https://cir.nii.ac.jp/crid/1570009750030873728
Naser, A.Y., Mansour, M.M., Alanazi, A.F., Sabha, O.,
Alwafi, H., Jalal, Z. & Mustafa Ali, M.K. 2021. Hospital admission trends
due to respiratory diseases in England and Wales between 1999 and 2019: An
ecological study. BMC Pulmonary Medicine 21: 356-365. https://doi.org/10.1186/s12890-021-01736-8
Othman, J., Sahani, M., Mahmud, M. & Ahmad, M.K.S.
2014. Transboundary smoke haze pollution in Malaysia: Inpatient health impacts
and economic valuation. Environmental Pollution 189: 194-201.
http://doi.org/10.1016/j.envpol.2014.03.010
Otieno, O.J., Joseph, M. & John, O. 2012.
Mathematical model for pneumonia dynamics among children. Southern Africa
Mathematical Sciences Association Conference (SAMSA), 26-29 November,
Africa. http://doi.org/10.12988/ijma.2013.35109
Raffee, A., Abdul Hamid, H., Radin Mohamed, R. &
Jaffar, M. 2018. Time series analysis of PM10 concentration in Parit
Raja residential area. International Journal of Engineering & Technology 7: 15-21.
Santos, U., Arbex, M.A., Braga, A., Mizutani, R., Cançado, J., Terra-Filho, M. & Chatkin, J. 2021.
Environmental air pollution: respiratory effects. The Brazilian Journal of Pneumology and International 47(1): e20200267.
https://doi.org/10.36416/1806-3756/e20200267
Seyoum, A., Ndlovu, P. & Zewotir, T. 2016.
Quasi-Poisson versus negative binomial regression models in identifying factors
affecting initial CD4 cell count change due to antiretroviral therapy
administered to HIV-positive adults in North–West Ethiopia (Amhara region). AIDS
Research and Therapy 13(36): 1-10. https://doi.org/10.1186/s12981-016-0119-6
Tian, L., Ho, K., Wang, T., Qiu, H., Pun, V., Chan, C.
& Yu, I. 2014. Ambient carbon monoxide and the risk of hospitalisation due
to chronic obstructive pulmonary disease. American Journal of Epidemiology 180(12):
1159-1167. https://doi.org/10.1093/aje/kwu248
UNICEF 2022. Pneumonia.
https://data.unicef.org/topic/child-health/pneumonia/ (accessed on 15 November
2022).
Unver, E., Bolat, E., Altin,
S., Çoban, A., Aktaş,
M., Fiçici, M. & Saral,
A. 2019. The effect of air pollution on respiratory system disease admissions
and health expenditures. Eurasian Journal of Medicine and Investigation 3(2): 137-143. https://doi.org/10.14744/ejmi.2019.56609
WHO. 2022. World Health Statistics 2022: Monitoring
Health for The SDGs, Sustainable Development Goals. World Health
Organization. https://www.who.int/publications/i/item/9789240051157
WHO. 2021. Living Guidance For Clinical Management
of COVID-19. Switzerland: WHO Press.
https://www.who.int/publications/i/item/WHO-2019-nCoV-clinical-2021-2
WHO. 2008. Global Alliance Against Chronic
Respiratory Diseases. Switzerland.
https://apps.who.int/iris/bitstream/handle/10665/43984/9789241597203_eng.pdf
WHO. 2005. International Health Regulations. 3rd
ed. Switzerland: WHO Press. https://www.who.int/publications/i/item/9789241580496
*Pengarang untuk surat-menyurat;
email: nm@ukm.edu.my
|